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Abstract

We develop compression schemes for EEG signals based aor @somposition. We explore various ways to arrange EEG
signals into tensors, and we evaluate several tensor desition schemes, including the Tucker decomposition, PRR®, and
recent random fiber selection approaches. We compute isttettbn curves for our proposed tensor-based scheme&H@s
compression. In addition, we investigate how compressifects common EEG statistics, including the power spectamd
statistical dependence measures (“EEG synchrony”).

I. INTRODUCTION

Electroencephalograms (EEG) are electrical signals decbalong the scalp or brain surface, generated by firing ofames
within the brain [1], [2]; those brain signals are instrurtann several areas. In neurology, EEG signals are for examged
to diagnose and study epilepsy and sleep disorders. In ¢tmi¢xt, EEG signals are often recorded over a short peridgong,
typically 20—40 minutes. However, EEG signals are sometiguntinuously recorded over extended periods of time (aéve
days, weeks, or potentially even months):

« in neurology intensive care units (ICU), e.g., for strokéigras,

« in telemedicine for neurological patients, where EEG istitmously recorded outside the hospital, usually at home.

In recent years, EEG signals are commonly used in Brain-Coendnterfaces (BCI). The latter use brain waves to control
devices such as a wheelchair, computer mouse and/or key/®@t systems may provide a communications channel for the
motion-disabled. At last, but not at least, EEG signals atenisively studied by neuroscientists, who try to gainghsin how

the brain works. Neuroscientists often record EEG signdiiewsubjects are stimulated in a controlled fashion (evipuial
stimulation), or perform certain well-defined tasks (emgemory task).

In telemedicine, intensive care, and other contexts, iteisirdble and natural to record scalp EEG over extendeddsedb
time; this results, however, in massive EEG data sets. Tdrereit is meaningful (and often necessary) to compres£=hEe
signals before storage or transmission. As an illustratienus consider a night-long recording of EEG from a patiith
sleep disorder. Assuming the EEG is acquired from 21 chanaieh rate of several hundreds of samples per second with a
resolution of 16 bits/sample, the EEG recordings would amaa several GBs. Ideally, one would want to monitor pagsent
over several days, weeks, or perhaps months—especialheisditing of telemedicine; clearly, it is then desirabledmpress
the EEG in order to limit the storage space and bandwidth dsaeable size.

The main challenges for EEG compression are as follows:

« the number of EEG channels can be large (e.g., 256), eslyei€iatcurate inverse modeling is needed,

« high sampling rate may be required (several kHz in the casentital EEG; several hundred Hz for scalp EEG), to capture

spikes and high-frequency oscillations in the EEG

« high-quality (lossless or near lossless) reconstructibthe EEG is often needed [3]. However, since EEG is highly

stochastic and non-stationary, lossless or near lossEE& ddmpression suffers from low compression performance.

« For telemedicine applications, compression algorithmsukh operate in real-time while consuming as little power as

possible.

In this study, we utilize tensor decomposition methods tmpress EEG signals. We explore various ways to arrange
EEG signals into tensors, and we evaluate several tensongessition schemes [4], [5], including the Tucker deconitjurs
PARAFAC, and recent random fiber selection approaches (6]. We compute rate-distortion curves for our proposstsor-
based schemes for EEG compression. In addition, we inastigow compression affects common EEG statistics, inatudi
the spectrum and statistical dependence measures (“EEhrayty”). Such statistics are commonly used in neurology ian
BCI systems.

In this abstract, we present our preliminary results. Magtaited results will be presented at the workshop. Thisrabsts
organized as follows.

Il. REVIEW OF LITERATURE

Signals can be compressed by exploiting correlations isahgignals. Multiple signals, such as EEG recordings, can be
jointly compressed by utilizing the correlation between thoseadggiesides the correlation within each sigimalividually. A



variety of techniques have been developed for compressit@ Eignals; we refer to [7] for an excellent review on lossles
EEG compression.

A. Auto-regressive models

EEG signals are often modeled as auto-regressive (AR) psese similarly as speech signals. An AR predictor is a non-
recursive system that predicts the current signal samplestng a weighted sum of a pre-specified number of previoupkesm
Perfect reconstruction is made possible by transmittirey ghediction error or residuals. Various AR predictors haeen
developed: linear AR predictor, recursive least squareb adaptive neural network predictors. Further refinememttuile
context-based bias cancellation [3] and detailed preatictesidual modeling [8], which improve compression perfance at
the expense of computational complexity.

B. Transformations

Before compressing signals, it can be fruitful to first tfans them in an other domain. In particular, one aims to find a
compact representation of the signals. For example, thesletatransform is commonly used, since it often leads to s&par
time-frequency representations. If many of the waveleffaients are close to zero, one can set them to zero, and stdye
the most significant non-zero coefficients; this leads to mpressed representation, at the expense of minor residumak.e
Common transformations include discrete cosine transf@fnsubband transform, wavelet transform, wavelet-patieasform,
and integer lifting wavelet transform [9], [7].

C. From single-channel to multi-channel compression

The methods discussed above are single-channel compresgdiemes, and they remove only the intra-channel cowalati
Multichannel compression algorithms compress all EEG phEnsimultaneously, by exploiting both inter-channel amtda-
channel correlation. Various approaches are possibleeXample, one can extend univariate AR prediction to muiiita AR
prediction, although such approach does not yet seem to e followed for EEG compression. In contrast, the integer
Karhunen-Loéve transform and its sub-optimal variativ@] [have been used.

D. Compressed sensing

The emerging field of compressed sensing opens the way téoracparse signals with very few random measurements, well
below the Nyquist rate. Signals could be acquired directlyhie compressed form and reconstructed for subsequentsanal
sparse acquisition of EEG signals is quite attractive fenbedicine. Compressed sensing of EEG has been exploreéein a
recent studies [11], [12].

E. Discussion

A large number of studies have been devoted to the compressiBEG. However, most of them consider the compression of
single EEG channels. On the other hand, multi-way analessdeen applied intensively to EEG signals (especially megative
decompositions of time-frequency maps), mostly for exinacfeatures (see, e.g., [13], [14]); those studies seesugyest
that multi-way analysis may be effective for EEG compressig well, however, many issues still need to be systemigtical
explored. We are currently conducting such systematicystaiid in the following, we will present our preliminary rétsy we
will also outline ongoing research.

IIl. TENSORDECOMPOSITIONS FORCOMPRESSINGEEG

Tensors or multi-way arrays provide a natural represenmtdtr multi-dimensional data. Tensor decomposition medek
important tools for feature extraction and classificatiorts they capture the dependencies in higher-order déta-Heey have
found application in many areas, e.g., psychometrics, oneetrics, and signal processing [4], [5]. Here, we explamsor
decomposition schemes for compressing multi-channel EBGalS.

A. Tensor formation

Multichannel EEG signals are arranged in the form of a thwag-tensor. Lett ¢ R/*/*X  represent the tensor. So far, we
have explored to methods to form a tensor from multi-chaiiteb signals:

« Time tensor : Single-channel EEG signals are arranged to form a matfiXT[8is matrix is then stacked to form a three-
way tensorX € RNV*NxM “whose frontal slices represents signal from a particutenoel. It can be expressed by the
following relationship:

X., = matrix EEG® (1: N?))  Vk=1,...,M, (1)

where N x N is the dimension of the frontal slicéy/ the number of channelsf EG*) the EEG from channet and
matrix() is function that arranges EEG in the form of a mattire entries are filled starting at the top left-hand sidemfr
left to right on the odd rows, and from right to left on the evews.

o Wavelet tensor : Wavelet tensor is derived from the time tengoy by subjecting each frontal slice to 2-D discrete wavelet
transform. The relationship between the wavelet-tedgre RY*VxM and time tenso#’ is given by:

X" =2D-DWT(X.;) Vk=1,...,M. )

The wavelet decomposition improves the sparsity of thet&ioslices, which may lead to more effective tensor decompo-
sitions.



In both tensor constructions, the mode-1 (column) fibresesgmts the samples from the same channel displacedgmples.
Mode-2 (row) fibres represents the adjacent samples fronsdh@e channel, whereas the samples along the mode-3 fibres
(tubes) represents the samples from adjacent channel aathe time instant. One can expect strong correlations et
tensor entries along mode-2 and mode-3 fibres, but less sg alode-1 fibres, due to the non-stationary nature of EEG.

B. Tensor decomposition and compression

In this abstract, we only consider the Tucker decompositioa tensorX’ is decomposed into a core tengpre R X@x R
and factor matrice\ € RV*” B € RV*? andC € RM*%_ (We refer to [4], [5] for a review of tensor decompositiokge
use the same notation as in [4]). The factor matricesbais matricesapturing the variation along the three modes and the
core tensor captures the interaction between them. Theefugcomposition is expressed mathematically by:

X=0Gx1Ax:Bx3C+E=X+E (3)
where X is the Tucker decomposition of and€ represents the approximation error.

C. Compression Performance measures

The compression performance is measured using two parenetampression ratio and percent-root mean square differ-
ence (PRD). The compression ratio is defined as the ratio mbeu of entries in the original tensor and the number of estri
in the compressed tensor:
numel(X)

CR = numel(G) + numel(A) + numel(B) + numel(C)’ @

wherenumel() is the number of entries in a matrix or tensor. Note that foste constructions, the number of entries in the
original tensomumel(X) is equal to the size of the EEG data set, i.e., number of chsutinees the length of the EEG signals.

The other important performance measure is the percentmean square difference (PRD) between the original and the
reconstructed signal:

SN (i) — 3(0))?
SN a(i)?

The latter quantifies the distortion between the originaste X and the Tucker decompositiot .

PRD(%) =

x 100. (5)

IV. RESULTS

We have analyzed 64-channel EEG from Physiobank EEG-MMiliede [15]. The EEG was recorded at a sampling rate of
80Hz. We considered EEG segments that are 256 and 1024 salopde and the size of the tensaris chosen ad6 x 16 x 64
and 32 x 32 x 64 respectively. We first computed the Tucker decompositiorafbpossible sizes of the core tenggr Next,
for fixed compression ratios (CR) we chose the core tenserthiat minimizes the distortion (PRD). As a benchmark, weshav
applied singular value decomposition (SVD) as well: the E&@hals are organized in a matrix where each row contain the
EEG signal of one channel; SVD is applied to that matrix, dmal number of retained singular vectors is varied from 1 to
M, yielding different compression ratios and correspondRDs. Our preliminary results are summarized in Fig. 1. Weeha
obtained those results by 4-fold crossvalidation. Inde@t;e the problem of selecting the size of the core tensosssreially
a model selection problem, crossvalidation is necessaagsess the generalization performance. The tensor-basgatession
schemes clearly outperform SVD, especially at large cosgine ratios. The tensor construction does not seem to bemat
much: time tensor and wavelet tensors lead to about the sasnég. Interestingly, the compression performance ib#st for
the long EEG segments (1024 samples); that is most cleaelgdke for SVD, and much less pronounced for the tensor-based
compression schemes. The latter is good news: it impligsgthad compression performance can be achieved even with fai
short EEG segments; as a result, the computational conplekthe tensor decomposition can be kept small, and hehee, t
multi-way EEG compression scheme has low complexity. Exampf reconstructed EEG signals are shown in Fig. 2.

We have also computed the relative error on specific EEGs8tatj including power spectrum and correlation matrixnigir
trends as in Fig. 1 can be observed (not shown here).

V. DISCUSSION AND CONCLUSION

Conventional multi-channel compression schemes usuapjoi the intra-channel and inter-channel correlatiors@parate
stages; tensor-based compression schemes capturehatraet and inter-channel correlations simultaneouslychvis a more
elegant approach that seems to yield good compressionrpenfice. In the near future, we will compare the proposed aoketh
additional multi-channel compression schemes, besidd3. SV

We are currently exploring extensions of the proposed agroFor example, the error tensbmay be further decomposed
by another Tucker decomposition. Alternatively, other poassion techniques may be applied to the cores tensor atat fa
matrices, e.g., arithmetic coding. Such additional corsgion stages try to exploit remaining correlations in thee¢ensor and
factor matrices, and/or error tensor.

So far, we have only obtained results for Tucker decompsitiVe are now experimenting with other tensor models, dtioly
PARAFAC [4], [5] and approximations based on partial sampl[6]. We are also considering unequal error protectiofis it
well-known that the high frequency components in EEG sigiaaé the most contaminated, since they are usually the wieake
Therefore, we can allow higher approximation error for théries in the wavelet tensor corresponding to high-freqgudeEG
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Fig. 1. Comparison of EEG compression scheme based on SVDwaiér decomposition. In SVD the number of singular vectsrimcreased to achieve the
desired distortion; in Tucker decomposition the size oedensor is optimized. Results are shown for ten¥oof size 16 x 16 x 64 (left) and32 x 32 x 64
(right).
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Fig. 2. Original and reconstructed EEG signal, and erronaidor the time tensor model for PRD = 5% (left) and 10% (rjght

components. At the same time, we would like to keep the apmation errors for the low-frequency entries as small asinbs.
At last, we are at present analyzing several additionalsg#éafrom healthy subjects and from epilepsy and AD patidResults
from our ongoing research will be presented at the workshop.
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